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Abstract: Retinal pigment epithelial (RPE) cells are well known to play a central role in the 
progression of numerous retinal diseases. Changes in the structure and function of these cells 
thus may serve as sensitive biomarkers of disease onset. While in vivo studies have focused 
on structural changes, functional ones may better capture cell health owing to their more 
direct connection to cell physiology. In this study, we developed a method based on adaptive 
optics optical coherence tomography (AO-OCT) and speckle field dynamics for 
characterizing organelle motility in individual RPE cells. We quantified the dynamics in 
terms of an exponential decay time constant, the time required for the speckle field to 
decorrelate. Using seven normal subjects, we found the RPE speckle field to decorrelate in 
about 5 s. This result has two fundamental implications for future clinical use. First, it 
establishes a path for generating a normative baseline to which motility of diseased RPE cells 
can be compared. Second, it predicts an AO-OCT image acquisition time that is 36 times 
faster than used in our earlier report for individuating RPE cells, thus a major improvement in 
clinical efficacy. 

©2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 

1. Introduction

Retinal pigment epithelial (RPE) cells are composed of organelles that are under constant 
motion as they execute cellular and molecular tasks, which encompass essentially every 
aspect of RPE cell physiology. Thus, organelle motion is fundamental to RPE function [1]. 
Because of the key role RPE cells play in the interchange of nutrients, ions, water and waste 
between the choriocapillaris and the photoreceptors, this monolayer of cells is the initiation 
point of many retinal degenerative diseases, most notably age-related macular degeneration, 
but also Best’s disease, Stargardt’s disease, retinitis pigmentosa, and others [2]. Early 
manifestation of RPE degeneration occurs at the cellular level and so detection, monitoring, 
and treatment should be most effective when targeting processes at this level. Consistent with 
this, animal studies have shown that diseased RPE cells exhibit abnormal organelle motility 
[3–5], thus pointing to motility as a potentially sensitive indicator of cell health. However, 
how these findings translate to the living human eye remains unknown. The primary obstacles 
to making use of RPE organelle motility as a biomarker has been the limited resolution of in 
vivo imaging techniques necessary to delineate these cells and the strong waveguiding 
property of the overlying photoreceptors that mask the RPE. Adaptive optics optical 
coherence tomography (AO-OCT) and scanning laser ophthalmoscope (AO-SLO) approaches 
have overcome these obstacles to provide detailed mapping of the RPE cell mosaic [6–16]. 
AO-OCT delineates RPE cells by taking advantage of the cells’ intrinsic organelle motion to 
increase cell contrast [10,17], while AO-SLO uses the intrinsic fluorescence of lipofuscin 
[6,7,14] and melanin [12–14], extrinsic fluorescence of an ICG dye [11], or multiply-scattered 
light (dark-field detection) [8]. 
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Despite these early demonstrations, measurements have been limited to morphological 
properties of RPE cells, such as cell density, area, and photoreceptor-to-RPE ratio. 
Measurement of cell function as expressed by organelle motion remains unexplored in living 
eyes. In a previous RPE imaging study, we found that AO-OCT volumes acquired at 3-minute 
intervals exhibited different speckle patterns in the RPE cells, sufficiently so that averaging of 
these volumes suppressed speckle noise and revealed the RPE cell mosaic [10]. Cancellation 
of speckle by averaging confirmed that the motility dynamics of these cells occurred on a 
time scale no greater than 3 minutes. In a subsequent AO-OCT pilot study, we characterized 
the temporal dynamics of RPE motility in two normal subjects and found them to be 
significantly shorter, being on the order of seconds rather than minutes. Averaging of images 
acquired at this shorter time interval also resulted in delineation of the RPE cell mosaic, thus 
substantiating the presence of faster dynamics [18]. 

In this study, we extend these first motility measurements: acquiring measurements on 
seven subjects, optimizing the sampling protocol for more complete characterization of the 
RPE motility dynamics, and confirming results on two separate AO-OCT imaging systems. 
We quantify dynamics in terms of an exponential decay time constant (τ), the time for 
motility to decorrelate the amplitude speckle field across individual RPE cells. This 
characterization has two fundamental uses. First, it provides a path for obtaining a motility 
baseline for normal, healthy RPE to which we can compare diseased RPE. Second, it predicts 
the extent to which our previously reported imaging experiments for individuating RPE cells 
can be reduced from its 90-minute length, a necessary requirement for clinical translation. We 
further demonstrate generalization of the clinical utility of RPE motility by obtaining results 
that are consistent on two AO-OCT platforms. These platforms, while different, share similar 
performance attributes, most critically the coherence volume of their imaging beam, which 
determines the number of organelles that contribute to each speckle. 

2. Methods

2.1. Description of AO-OCT imaging systems

RPE motility measurements were acquired using two AO-OCT imaging systems, one at 
Indiana University and the other at the U.S. Food and Drug Administration (FDA). The two 
systems share similar optical designs (see [17,19,20] for description) and acquired RPE 
images of similar clarity [10,17]. Key system parameters are summarized in Table 1. Critical 
for this study, the imaging coherence (speckle) volumes of the two AO-OCT systems were 
essentially the same: 24.2 µm3 (Indiana) and 23.1 µm3 (FDA) in retinal tissue (see Table 1). 
Thus speckle formed by each system encapsulated the same total number of organelles and 
therefore should yield similar speckle dynamics when imaging in the same retinal tissue. The 
systems acquired images fast enough to track RPE speckle dynamics up to 2.75 Hz. 

Table 1. AO-OCT system technical parameters for RPE motility imaging 

Parameters Indiana AO-OCT system FDA AO-OCT system 
Center wavelength (λc) 785 nm 830 nm 

Bandwidth (Δλ) 47 nm 60 nm 
Optical resolution (w × l × d) 2.4 × 2.4 × 4.2 µm3 2.5 × 2.5 × 3.7 µm3 

Light power entering eye 400 µW 430 µW 
Coherence volume 24.2 µm3 23.1 µm3 

2.2. Experimental design 

Subject: Seven subjects, ranging in age from 21 to 49 yr (S1 = 21, S2 = 26, S3 = 47, S4 = 49, 
S5 = 27, S6 = 32 and S7 = 34 yr old) and free of ocular disease, were recruited for the study. 
Four subjects (S1-S4) were imaged with the Indiana AO-OCT system, and three different 
subjects (S5-S7) were imaged with the FDA AO-OCT system. All subjects had best corrected 
visual acuity of 20/20 or better. Eye lengths ranged from 23.56 mm to 25.40 mm as measured 
with IOLMaster (Zeiss, Oberkochen, Germany) and were used to correct for axial length 
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differences in retinal image scale following Bennett et al. [21]. All procedures on the subjects 
adhered to the tenets of Helsinki declaration and approved by the Institutional Review Board 
of Indiana University and the FDA, respectively. Written informed consent was obtained after 
the nature and possible risks of the study were explained. 

AO-OCT beam intensity was measured at the cornea (Table 1) and below the safe limits 
established by ANSI [22] for the retinal illumination pattern used (bidirectional point scan 
over a square area) and length of the experiment. The right eye was cyclopleged and dilated 
with one drop of Tropicamide 0.5% for imaging. The eye and head were aligned and 
stabilized using a bite bar (Indiana) or chin and head rest (FDA) attached to a XYZ translation 
stage. 

Imaging protocol: AO-OCT volumes were acquired at 7° temporal to the fovea. Foveal 
scans were avoided to mitigate scanning beam distraction and additional eye motion by the 
subjects. For each subject, 30 to 62 AO-OCT videos were collected at 1 min or less interval 
and time stamped. As we did not know which video acquisition parameters would best 
capture the dynamics of RPE organelle motility, three experiments were conducted using 
different imaging parameters (Table 2). We used two main video durations: short 
videos  (1.8 s for Experiment 1 and 1.3 s for Experiment 2) were acquired in all seven 
subjects, and long videos (8.6 s and 9 s video durations: Experiment 2 and Experiment 3) 
were acquired in four of the seven subjects (S2, S5-S7). Experiment 1 and 3 images were 
acquired at high speed (500 kHz A-line rate; 5.5 Hz volume rate), and Experiment 2 images 
were acquired at lower speed (210 kHz A-line rate; 2.3 Hz volume rate). These speeds 
enabled temporal dynamics of RPE cell motility to be captured up to 2.75 Hz and 1.2 Hz, 
respectively. During the long video acquisitions, subjects were instructed to blink once every 
5 s to maintain good tear film quality while minimizing the number of volumes lost due to 
blinking. Time interval between consecutive videos ranged from 25 s to 80 s. 

Prior to collection of the AO-OCT volumes, system focus was adjusted to optimize cone 
image quality, determined by visual inspection of cones in en face images that were projected 
axially through the portion of the AO-OCT volume that contained the cone inner/outer 
segment junction (IS/OS) and cone outer segment tip (COST) reflectance bands [23]. 

Table 2. Image acquisition parameters 

Parameters Exp. 1 (S1-S4) Exp. 2 (S5-S7) Exp. 3 (S2) 
A-line acquisition rate 500 kHz 210 kHz 500 kHz 
A-line lateral sampling 1 µm/px 1.5 µm/px 1 µm/px 
# of A-lines per B-scan 300 300 300 
# of B-scans per volume 300 300 300 
Volume rate 5.5 Hz 2.3 Hz 5.5 Hz 
AO-OCT image FOV 1° × 1° 1.5° × 1.5° 1° × 1° 
Volume time interval (TI) 0.18 s 0.46 s 0.18 s 
# of volumes per video 10 3 20 50 
Video duration 1.8 s 1.3 s 8.6 s 9 s 
Video time interval ≤1 min ≤1 min ≤1 min ≤1 min
# of videos / location 30-62 30-40 2-3 2

2.3. 3-D image registration and data analysis 

3-D registration was applied to the AO-OCT volumes, followed by layer segmentation of the
cone IS/OS, COST, and RPE layers. The B-scan based 3-D registration algorithm [24] was
processed on a Graphical Processing Unit (GPU) via the Compute Unified Device
Architecture (CUDA; NVIDIA, Santa Clara CA) parallel programming platform. The
segmentation and data analysis steps were processed with custom algorithms developed in
MATLAB (Mathworks; Nattick, MA, U.S.A.). Registration and segmentation were based on
further advancements of previously published algorithms [24,25], and data analysis
algorithms were new for this study.
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Volumes with excessive motion artifacts were removed. Remaining volumes were 
combined into a single, time-stamped video and then registered in all three dimensions with 
subcellular accuracy to correct for motion artifacts. Registration to this level was necessary to 
prevent masking of organelle motility within individual RPE cells, which themselves were 
manually identified in the averaged, registered RPE en face image. Two additional layers 
were selected as motility controls (see Fig. 1): reflections from the cone layer (IS/OS + 
COST) and outer nuclear layer (ONL). Without visible light stimulation, the cone reflectance 
(IS/OS + COST) is known to be largely stable over minutes and exceedingly so over several 
seconds [26], the temporal bandwidth of the RPE motility dynamics we measured in this 
study. Reflectance changes associated with disc shedding are infrequent and occur over much 
longer periods [27–31]. Therefore, we expected the cone reflections to have a relatively long 
decay time constant (τ), which we used for normalizing the RPE signal. In contrast, the ONL 
reflection is considerably weaker, so much so in our images that white noise dominates and 
results in a delta-like τ. 

To quantify the temporal dynamics of RPE motility, a correlation function (CF) was 
calculated from the dynamic speckle pattern of individual RPE cells. Pixels within each RPE 
cell, defined by a Voronoi region [10] (see Fig.  1(E and F)), were used to compute the 
correlation coefficient (CC) between a reference (at time t1) and each consecutive image (at 
time t1, t2, t3, …) in the image series of that RPE cell: 
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where rcR  is the intensity of the rth row and cth column pixel in the reference image, R  is 

the mean intensity of all pixels in the cell of the reference image, -1( )rc nI t  is the intensity of 

the rth row and cth column pixel of the nth image in the image series at time point tn-1, and 

-1( )nI t  is the mean intensity of all pixels in the cell of the nth image at time point tn-1. rc is 

summation over all pixels within the RPE cell as defined by its Voronoi region. CC equals 
one if no changes occur between the two images (i.e., absence of motility). CC was computed 
for each RPE cell (see Fig. 1(F)) then averaged across all of the identified RPE cells at the 
same time point and plotted against time as CF in the local area. The same analysis was also 
applied to the corresponding regions of the two control layers: cone and ONL for comparison 
and normalization purposes. On four of the subjects (S2, S5-S7), additional CF values were 
computed at different depths across the RPE-Bruch’s membrane (BM) complex, thus testing 
for motility differences that might occur as organelle types and concentrations change across 
the complex depth, e.g., melanosomes, phagosome, and lipofuscin [32]. The five tested 
depths were apical, middle and basal areas of RPE, rod outer segment tip (ROST), and BM 
layer. The CF is predicted to follow an exponential decay model [33], which is described as 

( ) exp( ).tCF A t τ= × − (2)

The correlation function is defined by two independent terms. The first term, ( )A t , captures 

residual motion contributions from the eye and system, e.g., uncorrected scanning artifacts, 
which are reduced in magnitude to the sub-cellular level after image registration is applied. 

The second term, exp( )t
τ− , captures organelle motility. τ  is the de-correlation time of the

speckle pattern and the metric we used to quantify RPE motility. Unfortunately, separating 
the two terms is problematic as both are unknown. Here we took advantage of the fact that all 
pixels of a given A-scan are simultaneously acquired, and therefore A(t) must contain the 
same system and uncorrected eye motion artifacts regardless of depth in the AO-OCT 
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the first sample point at 0.2 s, again confirming expectation. Similar behavior of the cone and 
ONL signals were found in the other six subjects. 

To determine τ for RPE, system and residual motion errors were removed by normalizing 
to the cone reflectance as shown in the motility functions plotted in Fig. 3(B). The plot shows 
that CC is high at the beginning of the image series, indicating an initially stable speckle 
pattern. But with the lapse of time, CC decreases monotonically until after a few seconds it 
reaches a plateau determined by features common to all images in the series. Figure 3(C) 
shows the normalized CC measurements and corresponding CF fit (Eq. (3) for the seven 
subjects. From Experiment 1, the CF fit gives an average τ of 2.7 s for RPEs based on 363 to 
475 RPE cells per subject. However, the Experiment 1 video duration of 1.8 s was too short to 
sample across the drop of the motility curve, including near the time constant value (2.7 s). 
To assess whether this undersampling may have caused an error in our CF fit, Experiment 2 
and 3 used longer video durations (~9 s) in order to more completely capture the RPE motility 
exponential decay. These experiments yielded an average τ = 4.9 s based on 475 to 651 cells 
(see Fig. 3(c)). Note that the three subjects in Experiment 2 were imaged with the FDA 
system, and the averaged time constant (τ = 5.1 s) from those three subjects was almost twice 
long as the averaged time constant (τ = 2.7 s) from Experiment 1, but close to the time 
constant (τ = 4.2 s) from Experiment 3 obtained with the Indiana system. 

Fig. 3. Motility dynamics measured at three retinal layers in seven subjects. (A) Representative 
raw motility function from S2 (Experiment 3) before normalization to the cone layer. Error 
bars represent standard deviation across 475 RPE cells. Colors represent measurements taken 
at three retinal layers: ONL (blue), Cone (IS/OS + COST) (red), and RPE (green). Colors in 
(A) also apply in (B). (B) Motility function is normalized to cone layer to remove residual eye
motion and system errors. (C) Normalized RPE motility measurements are shown for the seven 
subjects. Scatterplots with ♦ symbols were from Experiment 1 with short video durations of
1.8 s, and scatterplots with  symbols were from Experiments 2 and 3 with long video
durations of ~9 s (see Table 2 for acquisition parameters). The gap between ~10 s and ~100 s
for this data set is due to the time interval between two consecutive videos. (see Section 2.2).
Fitted time constants are given in the key for each subject in each experiment. 

To determine whether these differences in time constant were due to the use of different 
imaging systems or to an undersampling of CC, we used the data from Experiment 3 and 
refitted the exponential decay after removing the data points between 1.8 s and 9 s to mimic 
the short video scenario. The model yielded a similar time constant (τ = 2.8 s) as the one (τ = 
2.9 s) achieved from the short video in Experiment 1. A shorter time constant (average τ = 
2.7 s) was also produced when the same strategy (remove data points between 1.8 s and 9 s) 
was applied to the Experiment 2 data, thus confirming that undersampling was the root cause 
of the underestimation in Experiment 1. Regardless, results from any of the three experiments 
point to a motility time constant that is orders of magnitude less than the 3-minute interval we 
used in our first RPE imaging study [10]. 

A repeated measurement on RPE motility, performed using two long videos from the 
same subject (S6) on the same patch of retina, resulted in time constants of 4.74 s and 4.61 s. 
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images averaged, but at different rates depending on TI. SNR increase is 2.2 × higher for the 
two longest TIs compared to the shortest one. The additional SNR improvement with TI  τ>  
further confirms the results observed in Fig. 4. The slight SNR increase with TI<τ  is 
partially from the RPE speckle pattern variation, given the total image duration is 8 s (0.23 
(TI) × 35 (# of images)), about twice longer than the predicted time constant ( 4.2τ =  s on 
S2). However, the SNR improvement is primarily attributed to averaging, which reduces the 
variation of OCT image noise (mainly photon noise) that sets the noise floor in the 2-D power 
spectra of our images. We observed the speckle patterns change little between Fig. 5(B) (N = 
1) and Fig. 5(E) (N = 5), and somewhat alter their appearance in Fig. 5(C) (N = 35) in which
the RPE clarity is clearly inferior to the en face image in Fig. 5(D) (N = 35). The comparison
between Fig. 5(C) and Fig. 5(D) suggests the speckles remain largely correlated for TI = 0.23
s, and longer TI is required to enable speckle decorrelation to further improve RPE clarity.
This is further illustrated by comparison of the en face images in Fig. 5(C) and 5(G), which
appear qualitatively similar even though one is produced with 35 images but TI<τ  and the
other is produced with 5 images but TI τ> , confirming the relative averages that produce
equivalent SNR (horizontal crossing point of dash line in Fig. 5(A)). Similar results were
obtained for the same analysis in other subjects as well. Note, eye motion may result in black
pixels and/or lines in single en face images, which results in zero contribution to those pixels
and/or lines in the image average. Thus variation in the effective number of images that are
averaged at any pixel is expected. This is demonstrated by the false-colored images of Figs.
5(F) and 5(H) that show the number of volumes averaged varies from 0 to 5 depending on
pixel location in the image.

4. Discussion

We developed a novel AO-OCT-based method for measuring organelle motility in individual 
RPE cells. Our method detects the time-dependent fluctuations in scattered light intensity 
(speckle) from the cells and relates these fluctuations to physical properties of the same cells 
(organelle motility in this study). This dynamic speckle technique has been successfully used 
in prior studies for capturing intra-cellular motion [35], enhancing subcellular details [36,37] 
and characterizing motility of other retinal tissue layers [38,39]. Using motion-evoked 
speckle changes here, we successfully delineated RPE cells and measured the RPE motility 
decay time constant (τ) in seven healthy subjects. Because our technique relies on the 3-D 
resolution provided by AO-OCT and the speckle decorrelation dynamics inherent in RPE 
organelle motility, we expect the same approach can be applied at any retinal location, 
including the fovea. In support of this, the RPE mosaic has previously been observed with 
AO-OCT at numerous locations across the macula with different densities of cones and rods 
[10,40]. 

4.1 Important parameters of the AO-OCT design 

Our measurements of τ are consistent between the two imaging systems that were used in this 
study (Fig. 3(C)), a finding perhaps not unexpected given their similar designs. Consistency 
provides evidence of generalizability and repeatability of our method, but also raises 
questions about the role that differences between the two systems might play, as for example 
our systems differed in physical size and design strategies for the sample arm, and used 
different wavefront correctors, wavefront sensors, linescan detectors, light sources, and 
acquisition software. In AO-OCT and OCT images, speckle arises from the coherent 
interaction of the imaging beam with localized random scatterers in the tissue (in our case 
RPE organelles) that result in constructive and destructive interference. Because speckle is 
the fundamental physical phenomena that underlies our RPE motility measurements, the 
optical properties that control speckle size and shape (i.e., coherence volume) must drive 
system design and be fundamental for achieving consistency across AO-OCT platforms. 
Theoretically, these properties reduce to imaging wavelength and numerical aperture (for 
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beam entering the human eye). For our two systems (Table 1), we used similar imaging 
wavelengths (785 nm and 830 nm) and same beam diameters at the eye (6.7 mm), resulting in 
almost identical coherence volumes (24.2 μm3 and 23.1 μm3) in tissue. 

4.2 Possible organelle sources of the motility signal 

The RPE cell interior is in constant motion with intracellular transport of organelles along 
three-dimensional scaffolding of actin filaments and microtubules. These protein-enabled 
thoroughfares allow organelles to traverse the cell in a second or so. Surprisingly, the 
literature on organelle content in human RPE is limited [32], and thus we can only speculate 
as to which types may contribute to the motility signal in our AO-OCT images. Prominent 
organelles in the RPE include melanosomes, phagosomes, and lipofuscin. The first two are 
well known for their motility behavior [1]. Both have high refractive indices (n = 1.7 of 
melanin [41] and 1.43 of photoreceptor outer segment remnants [42]) relative to their 
cytoplasmic surround (n = 1.37 [41]) and thus are likely sources of reflected light. Consistent 
with this, several studies point to melanin, which is synthesized and compartmentalized in 
melanosome organelles [43], as the primary source of the OCT signal in the RPE band 
[10,44,45]. Animal model studies show that the melanosome movement in RPE cells can be 
faster than 1 µm/s, enabling these organelles to quickly traverse the coherence volume of our 
AO-OCT systems (~2.5 × 2.5 × 4 μm3). If a primary contributing source in our images, 
melanin motility will have direct clinical significance as interruption of its transport across 
the cell has been shown to cause blindness in humans [4]. 

Phagosomes also exhibit motility behavior. They form from the membranous discs that 
are regularly pruned from the tips of photoreceptor outer segments. These pruned tips descend 
into the RPE cell where they are engulfed and phagocytized. Regulating phagosome 
movement is thought to involve the same molecular machinery that regulates melanosome 
movement [1,3,5]. We know the initial pruning event (disc shedding) causes a pronounced, 
transient disturbance in the reflection at the photoreceptor/RPE interface, as has been recently 
observed using AO-OCT [30,31]. Thus it is reasonable to expect the downstream 
phagocytosis process to generate similar reflectance disturbances within the RPE cell as the 
engulfed contents are digested, but this awaits testing. 

Finally, lipofuscin is the undigested byproduct of the phagocytosis event, composed of a 
heterogeneous mixture of lipids and proteins that accumulate in the RPE cell with age. The 
optical properties of this byproduct must vary with mixture concentrations, which makes 
characterizing its reflectance contributions difficult. Nevertheless, if it were to strongly 
contribute, we would expect RPE image clarity to also vary with age (either increase or 
decrease). Our imaging results to date have not demonstrated an age dependence, but the 
number of subjects we have imaged is limited and the trend could be masked by other factors, 
as for example inter-subject variation and age-dependent properties of other organelles. 

4.3 Depth-dependent motility in RPE layer 

Some of the primary RPE organelles (e.g., melanosomes and lipofuscin) have been reported 
to stratify to different depths in the RPE [46]. Given that their different physical size and 
physiological role may lead to different motility dynamics, we hypothesized a possible 
variation in CF with depth in the RPE. To test, we calculated CF at three depths inside the 
RPE layer, a fourth one at BM, and a fifth at ROST. The three RPE depths (marked as (1-3) 
in Fig. 6(A)) were selected at the apical (expected high melanosome density [46]), middle 
(the strongest RPE reflectance in our AO-OCT images), and basal (expected high lipofuscin 
density [46]) portions of the RPE layer. The apical and basal locations were chosen to be 
~ 4 µm above and below the peak intensity, a separation large enough to generate different 
speckle patterns in the corresponding en face images (Fig. 6(D-F)), but small enough to avoid 
signal contamination from the adjacent ROST and BM layers. Although the averaged en face 
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similarly separated, albeit on the basal side. Its time constant (averaged and single en face 
images shown in Fig. 6(G,K)) of 4.9 s is closest to that of the middle RPE band (τ = 4.3 s). 
These measurements demonstrate a clear path for establishing motility baselines across the 
RPE complex in normals and with which comparisons can be made against pathologic retinas. 

4.4 Influence of motion on speckle decorrelation 

We removed motion contributions from the eye and imaging system by registering the 
acquired images with subcellular accuracy (confirmed by the resolution of photoreceptor and 
RPE cells in the averaged images) and normalizing the correlation function with the cone 
signal (Eq. (2)). While this approach appeared effective, we were unable to directly determine 
what residual motion artifacts might have remained and what their influence, if any, might 
have been on the observed speckle decorrelation, i.e., τ ~5 s for RPE cells. Unable to 
quantitatively assess, we resorted to a qualitative examination of the possible contributions of 
motion. To do so, we took advantage of the notable difference in RPE clarity in images 
acquired with TI = 0.23 s and 7.8 s (see Fig. 5). We examined whether this clarity difference 
could have been caused by angle compounding (a pupil effect caused by eye rotation, thus a 
consequence of eye motion) [47] or minute levels of image blur induced by residual eye 
motion. 

To start, we extracted the three-dimensional eye motion from a representative OCT data 
set and plotted as displacements in the x, y, and z directions in Fig. 7. The displacements were 
computed from the output of the 3-D registration. B-scans with registration coefficients larger 
than the selected coefficient threshold were used for this calculation (the mean displacement 
was calculated as the displacement of the volume, which is plotted in the figure. As evident 
from the figure, considerable eye motion occurred during both video acquisitions with motion 
traversals larger than the resolution element of the two imaging systems (2.4 × 2.4 × 4.2 µm3 
and 2.5 × 2.5 × 3.7 µm3). The overall 3-D displacements were comparable, 29.2 ± 15.5 μm 
and 43.3 ± 19.8 μm (mean ± std) for TI of 0.23 s and 7.8 s, respectively. Similar results were 
obtained for the same analysis in other subjects as well. Comparable retinal motion implies 
comparable range of angular illumination of the retina and therefore comparable levels of 
contrast enhancement of the RPE. 

Next, we examined the possibility of motion-induced image blur. Based on the 
algorithmic design of our image registration method, we expect registration accuracy to 
worsen with the magnitude of the eye motion, both for motion parallel to and perpendicular to 
the fast B-scan direction. This trend coupled with the comparable motion displacements in the 
two imaging scenarios (TI = 0.23 s and 7.8 s) points to comparable registration accuracy for 
both scenarios and thus comparable motion-induced image blur and contrast improvement. 
The fact that we observed notably different RPE contrast suggests residual eye motion is an 
unlikely contributor. In summary, we have found no evidence to link our measured time 
constant and RPE contrast improvement to sources other than the physiological dynamics 
internal to the cells imaged. Consistent with this conclusion, the RPE time constants we have 
measured (~5 s) fall well within the range reported for other biological tissues (0.4-34 s) that 
were measured under highly controlled and stable environments [36,38,48,49], albeit this 
range is relatively large. 
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sources to separate the RPE layer or other means of RPE cell contrast), and AO seems to be 
the most straight-forward technique to achieve the required lateral resolution. What we have 
demonstrated in comparable measurements on two different AO-OCT systems is that once the 
necessary coherence volume is achieved, other factors in system performance appear less 
important. This increases the potential of validation as the measurement is not tied to a highly 
specialized technique. The second condition is proper validation in normal, healthy eyes. 
Repeatability and reproducibility measurements must be performed on a sizeable cohort of 
subjects (perhaps hundreds) to establish a normative baseline. The relatively recent 
development of OCT-measured NFL thickness as a surrogate for GCL loss and glaucoma 
disease stage points to a similar validation pathway for RPE motility in degenerative diseases. 
Finally, motility differences in RPE-related diseases must be measured, along with studies 
that definitively determine the organelle source of motility speeds (and optical decorrelation). 
The path is arduous, while the reward in terms of AO clinical translation may be significant. 
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